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The area between the graph of a function x 7→ (x,C(x)) and the x-axis (hatched region in the figure below):
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can be computed as the integral
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C(x)dx (1)

If the curve is given parametrically, i.e., t 7→ (Cx(t), Cy(t)), the integral (1) can be rewritten
(

by substituting
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dt
)

as
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If, furthermore, t0 6= t1 and (Cx(t0), Cy(t0)) = (Cx(t1), Cy(t1)), i.e., the curve is cyclic, the integral (2) yields
the area surrounded by the curve.

Assume that the cyclic curve is a spline composed of Bézier arcs B1, B2, . . . , Bn (each defined for 0 ≤ t ≤ 1).
The area of the region surrounded by the spline
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is the the sum of integrals:
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In the sequel, I’ll skip the index i—calculations are exactly the same for each i; the functions B(t) =
(Bx(t), By(t)) are third-degree polynomials:
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3) are points in the plane; b0, b3 are the nodes and

b1, b2 are the control points of the Bézier arc B.

The computation of the antiderivative of the functionBy(t)dB
x(t)
dt
(a fifth-degree polynomial) is an elementary

task (actually, it suffices to know that a derivative of tn is ntn−1 and, thus, the integral of tn is 1
n+1 t

n+1).
Skipping tedious calculations, I’ll present the final formula:
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The formula (3) stemmed from the discussion between Daniel H. Luecking and Laurent C. Siebenmann
on MetaFont/MetaPost Discussion List (metafont@ens.fr, 2000; presently the MetaPost Discussion List is
hosted by TUG—metapost@tug.org). Crucial was Luecking’s observation that three real multiplications per
Bézier arc suffice to compute the area surrounded by a Bézier spline; division of the whole sum by 20 is
a constant cost and thus can be neglected. Integer multiplication can be replaced by operations usually faster
than real multiplication (e.g., 10a = 8a+ 2a, 8a = a shifted left by 3 bits, 2a = a shifted left by 1 bit).

Of course, such an optimization of the arithmetic operations makes sense only in a “production” imple-
mentation of the algorithm. The implementation at the level of MetaFont/MetaPost macros can be neither
efficient nor precise. Nevertheless, the following code may sometimes prove useful:

vardef area(expr p) = % p is a B\’ezier segment; result = \int y dx
save xa, xb, xc, xd, ya, yb, yc, yd;
(xa,20ya)=point 0 of p;
(xb,20yb)=postcontrol 0 of p;
(xc,20yc)=precontrol 1 of p;
(xd,20yd)=point 1 of p;
(xb-xa)*(10ya + 6yb + 3yc + yd)
+(xc-xb)*( 4ya + 6yb + 6yc + 4yd)
+(xd-xc)*( ya + 3yb + 6yc + 10yd)
enddef;

vardef Area(expr P) = % P is a cyclic path; result = area of the interior
area(subpath (0,1) of P)
for t=1 upto length(P)-1: + area(subpath (t,t+1) of P) endfor
enddef;

Observe that the macro Area computes a signed area (for the negative counterclockwise-oriented curves,
and positive—for the clockwise-oriented ones). As a consequence, a non-trivial curve with selfintersection(s)
(e.g., eight-shaped) may surround a region with the area equal to zero.

Observe also that the calculations can be carried out with respect to the y-axis, thus the following code

vardef area(expr p) = % p is a B\’ezier segment; result = \int y dx
save xa, xb, xc, xd, ya, yb, yc, yd;
(-20xa,ya)=point 0 of p;
(-20xb,yb)=postcontrol 0 of p;
(-20xc,yc)=precontrol 1 of p;
(-20xd,yd)=point 1 of p;
(yb-ya)*(10xa + 6xb + 3xc + xd)
+(yc-yb)*( 4xa + 6xb + 6xc + 4xd)
+(yd-yc)*( xa + 3xb + 6xc + 10xd)
enddef;

vardef Area(expr P) = % P is a cyclic path; result = area of the interior
area(subpath (0,1) of P)
for t=1 upto length(P)-1: + area(subpath (t,t+1) of P) endfor
enddef;

will yield the same results as the former one (within the accuracy of rounding errors).
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