AREA ENCLOSED BY A CYCLIC BÉZIER SPLINE

Bogusław Jackowski

The area between the graph of a function $x \mapsto(x, C(x))$ and the x-axis (hatched region in the figure below):

can be computed as the integral

$$
\begin{equation*}
\int_{x_{0}}^{x_{1}} C(x) d x \tag{1}
\end{equation*}
$$

If the curve is given parametrically, i.e., $t \mapsto\left(C^{x}(t), C^{y}(t)\right)$, the integral (1) can be rewritten (by substituting $x=C^{x}(t), x_{0}=C^{x}\left(t_{0}\right), x_{1}=C^{x}\left(t_{1}\right), C(x)=C\left(C^{x}(t)\right)=C^{y}(t)$, and $\left.d x=\frac{d C^{x}(t)}{d t} d t\right)$ as

$$
\begin{equation*}
\int_{t_{0}}^{t_{1}} C^{y}(t) \frac{d C^{x}(t)}{d t} d t \tag{2}
\end{equation*}
$$

If, furthermore, $t_{0} \neq t_{1}$ and $\left(C_{x}\left(t_{0}\right), C_{y}\left(t_{0}\right)\right)=\left(C_{x}\left(t_{1}\right), C_{y}\left(t_{1}\right)\right)$, i.e., the curve is cyclic, the integral (2) yields the area surrounded by the curve.

Assume that the cyclic curve is a spline composed of Bézier arcs $B_{1}, B_{2}, \ldots, B_{n}$ (each defined for $0 \leq t \leq 1$). The area of the region surrounded by the spline

is the the sum of integrals:

$$
\sum_{i=1}^{n} \int_{0}^{1} B_{i}^{y}(t) \frac{d B_{i}^{x}(t)}{d t} d t
$$

In the sequel, I'll skip the index i-calculations are exactly the same for each i; the functions $B(t)=$ $\left(B^{x}(t), B^{y}(t)\right)$ are third-degree polynomials:

$$
B(t)=b_{0}(1-t)^{3}+3 b_{1}(1-t)^{2} t+3 b_{2}(1-t) t^{2}+b_{3} t^{3}
$$

where $b_{0}=\left(b_{0}^{x}, b_{0}^{y}\right), b_{1}=\left(b_{1}^{x}, b_{1}^{y}\right), b_{2}=\left(b_{2}^{x}, b_{2}^{y}\right), b_{3}=\left(b_{3}^{x}, b_{3}^{y}\right)$ are points in the plane; b_{0}, b_{3} are the nodes and b_{1}, b_{2} are the control points of the Bézier arc B.
The computation of the antiderivative of the function $B^{y}(t) \frac{d B^{x}(t)}{d t}$ (a fifth-degree polynomial) is an elementary task (actually, it suffices to know that a derivative of t^{n} is $n t^{n-1}$ and, thus, the integral of t^{n} is $\frac{1}{n+1} t^{n+1}$). Skipping tedious calculations, I'll present the final formula:

$$
\begin{align*}
20 \int_{0}^{1} B^{y}(t) \frac{d B^{x}(t)}{d t} d t= & \left(b_{1}^{x}-b_{0}^{x}\right)\left(10 b_{0}^{y}+6 b_{1}^{y}+3 b_{2}^{y}+b_{3}^{y}\right)+ \\
& \left(b_{2}^{x}-b_{1}^{x}\right)\left(4 b_{0}^{y}+6 b_{1}^{y}+6 b_{2}^{y}+4 b_{3}^{y}\right)+ \tag{3}\\
& \left(b_{3}^{x}-b_{2}^{x}\right)\left(b_{0}^{y}+3 b_{1}^{y}+6 b_{2}^{y}+10 b_{3}^{y}\right)
\end{align*}
$$

The formula (3) stemmed from the discussion between Daniel H. Luecking and Laurent C. Siebenmann on MetaFont/MetaPost Discussion List (metafont@ens.fr, 2000; presently the MetaPost Discussion List is hosted by TUG-metapost@tug.org). Crucial was Luecking's observation that three real multiplications per Bézier arc suffice to compute the area surrounded by a Bézier spline; division of the whole sum by 20 is a constant cost and thus can be neglected. Integer multiplication can be replaced by operations usually faster than real multiplication (e.g., $10 a=8 a+2 a, 8 a=a$ shifted left by 3 bits, $2 a=a$ shifted left by 1 bit).

Of course, such an optimization of the arithmetic operations makes sense only in a "production" implementation of the algorithm. The implementation at the level of MetaFont/MetaPost macros can be neither efficient nor precise. Nevertheless, the following code may sometimes prove useful:

```
vardef area(expr p) = % p is a B\'ezier segment; result = \int y dx
    save xa, xb, xc, xd, ya, yb, yc, yd;
    (xa,20ya)=point 0 of p;
    (xb,20yb)=postcontrol 0 of p;
    (xc,20yc)=precontrol 1 of p;
    (xd,20yd)=point 1 of p;
            (xb-xa)*(10ya + 6yb + 3yc + yd)
    +(xc-xb)*(4ya + 6yb + 6yc + 4yd)
    +(xd-xc)*( ya + 3yb + 6yc + 10yd)
enddef;
vardef Area(expr P) = % P is a cyclic path; result = area of the interior
    area(subpath (0,1) of P)
        for t=1 upto length(P)-1: + area(subpath (t,t+1) of P) endfor
enddef;
```

Observe that the macro Area computes a signed area (for the negative counterclockwise-oriented curves, and positive - for the clockwise-oriented ones). As a consequence, a non-trivial curve with selfintersection(s) (e.g., eight-shaped) may surround a region with the area equal to zero.

Observe also that the calculations can be carried out with respect to the y-axis, thus the following code

```
vardef area(expr p) = % p is a B\'ezier segment; result = \int y dx
    save xa, xb, xc, xd, ya, yb, yc, yd;
    (-20xa,ya)=point 0 of p;
    (-20xb,yb)=postcontrol 0 of p;
    (-20xc,yc)=precontrol 1 of p;
    (-20xd,yd)=point 1 of p;
        (yb-ya)*(10xa + 6xb + 3xc + xd)
    +(yc-yb)*( 4xa + 6xb + 6xc + 4xd)
    +(yd-yc)*( xa + 3xb + 6xc + 10xd)
enddef;
vardef Area(expr P) = % P is a cyclic path; result = area of the interior
    area(subpath (0,1) of P)
    for t=1 upto length(P)-1: + area(subpath (t,t+1) of P) endfor
enddef;
```

will yield the same results as the former one (within the accuracy of rounding errors).

