ON COMPUTING A WINDING NUMBER FOR BÉZIER SPLINES

Bogusław Jackowski

Assume that we have given a point P in the plane and the planar curve $C(t)$ defined for $t_{0} \leq t \leq t_{1}$. The total angle encircled by the radius $P C(t)$ as t runs from t_{0} to t_{1} we will call the winding angle and denote by α_{w} :

Note that the winding angle is insensitive to certain local properties of the curve $C(t)$ (e.g., local loops): in the figures above, the winding angle is the same in both cases (it is assumed that points $P, C\left(t_{0}\right)$ and $C\left(t_{1}\right)$ coincide).

The winding angle is positive if the the point P lies to the right with respect to the point traversing the curve, and negative otherwise.

Of course, the absolute value of a winding angle can be larger than 360° :

For cyclic curves, the winding angle is always a multiple of 360°, i.e., $\alpha_{w}=360^{\circ} w$, where w is an integer. The entity w is called the winding number (for a given point and curve).

In the sequel, we will focus our attention on cylic Bézier splines.
The idea of the algorithm computing the winding number for Bézier splines is due to Laurent C. Siebenmann (metafont@ens.fr, 2000; now the MetaPost Discussion List is hosted by TUG-metapost@tug.org). Siebenmann's solution, however, was MetaPost-oriented-it exploited heavily the operation arctime, available in MetaPost but unavailable, e.g., in MetaFont. Below, I'll present an algorithm basing on the same idea but referring to more elementary properties of a Bézier segment.

For a given point P and a Bézier spline C, we will try to find the winding angle by measuring the winding angles for a discrete series of time points. First, we will try to measure angles between nodes $0,1,2, \ldots, n$ of the spline C. If the relevant Bézier segments are appropriately short, the sum of the angles yields the total winding angle. The problem arises, when the Bézier arc is too long-see, e.g., the leftmost panel of the first figure (the angle $C\left(t_{0}\right) P C\left(t_{1}\right)$ equals $360^{\circ}-\alpha_{w}$).

The main observation of Siebenmann is as follows: if the length of the subarc $C(t)$ for $t_{0} \leq t \leq t_{1}$ is shorter than the length of the longer of the radii $P C\left(t_{0}\right)$ and $P C\left(t_{1}\right)$, than we can safely assume that the (acute) angle between $P C\left(t_{0}\right)$ and $P C\left(t_{1}\right)$ is the winding angle. Actually, we do not need to know the exact length of the arc - an approximation suffices. If B_{a}, B_{b}, B_{c}, and B_{d} are points defining a Bézier arc B (i.e., B_{a} and B_{d} are its nodes, B_{b} and B_{c} are its control points), then

$$
\left|B_{a} B_{b}\right|+\left|B_{b} B_{c}\right|+\left|B_{c} B_{d}\right| \geq|B|
$$

($|\ldots|$ denotes the length of an interval and the length of a Bézier arc). In other words, we can safely use the left-hand side of the above inequality instead of the true value of the arc length in the computation of the winding angle/number.

The algorithm can be expressed in a "pseudocode" as follows:

```
input: a point \(P\) and a Bézier spline \(B\), consisting of segments \(B_{1}, B_{2}, \ldots, B_{n}\)
output: \(\quad \alpha_{w}\) - the winding angle for \(P\) and \(B\)
procedure windingangle \((P, B)\)
    if \(B\) is a single segment
        let \(B_{a}, B_{b}, B_{c}, B_{d}\) be the consecutive control nodes of the segment \(B\)
        if \(\min \left(\left|P B_{a}\right|,\left|P B_{d}\right|\right)<\) assumed minimal distance
                exit ( \(P\) almost coincides with \(B\), winding angle incalculable)
            fi
            if \(\quad\left|B_{a} B_{b}\right|+\left|B_{b} B_{c}\right|+\left|B_{c} B_{d}\right|>\max \left(\left|P B_{a}\right|,\left|P B_{d}\right|\right)\)
                return windingangle \((P, B(0,1 / 2))+\) windingangle \((B(1 / 2,1))\)
            else
                return angle \(\alpha\) between the radii \(P B_{a}\) and \(P B_{d}\left(-90^{\circ}<\alpha<90^{\circ}\right)\)
            fi
    else
        return windingangle \(\left(P, B_{1}\right)+\ldots+\) windingangle \(\left(P, B_{n}\right)\)
    fi
end
```

An example of MetaPost/MetaFont implementation is given below:

```
vardef mock_arclength(expr B) = % |B| -- B\'ezier segment
    % |mock_arclength(B)>=arclength(B)|
    length((postcontrol 0 of B)-(point 0 of B)) +
    length((precontrol 1 of B)-(postcontrol 0 of B)) +
    length((point 1 of B)-(precontrol 1 of B))
enddef;
vardef windingangle(expr P,B) = % |P| -- point, |B| -- B\'ezier spline
    if length(B)=1: % single segment
        save r,v;
        r0=length(P-point 0 of B); r1=length(P-point 1 of B);
        if (r0<2eps) and (r1<2eps): % MF and MP are rather inaccurate, we'd better stop now
        errhelp "It is rather not advisable to continue. Will return 0.";
        errmessage "windingangle: point almost coincides with B\'ezier segment (dist="
            & decimal(min(r0,r1)) & ")";
        0
        else:
        v:=mock_arclength(B); % |v| denotes both length and angle
        if (v>r0) and (v>r1): % possibly too long B\'ezier arc
            windingangle(P, subpath (0, 1/2) of B) + windingangle(P, subpath (1/2, 1) of B)
        else:
            v:=angle((point 1 of B)-P)-angle((point 0 of B)-P);
            if v>=180: v:=v-360; fi if v<-180: v:=v+360; fi
        v
        fi
    fi
    else: % multisegment spline
        windingangle(P,subpath (0,1) of B)
        for i:=1 upto length(B)-1: + windingangle(P,subpath (i,i+1) of B) endfor
    fi
enddef;
```

Note that although the returned angle (line 23 in the MF/MP code above) is acute, the difference of the component angles (line 21) can be ouside the interval $\left\langle-180^{\circ}, 180^{\circ}\right\rangle$; hence the normalization (line 22).
If the operation windingnumber is needed for some reasons, it can be implemented trivally:

```
vardef windingnumber (expr P,B) = % |P| -- point, |B| -- B\'ezier spline
    windingangle(P,B)/360
enddef;
```

The operations windingangle or, equivalently, windingnumber can be used, e.g., for determining the mutual position of two nonintersecting cyclic curves (whether one is embeded inside the other or not):

```
tertiarydef a inside b =
    if path a: % |and path b|; |a| and |b| must be cyclic and must not touch each other
        begingroup
            save a_,b_; (a_,b_)=(windingnumber(point 0 of a,b), windingnumber(point 0 of b,a));
            (abs(a_-1)<eps) and (abs(b_)<eps)
    endgroup
    else: % |numeric a and pair b|
        begingroup
            (a>=xpart b) and (a<=ypart b)
        endgroup
    fi
enddef;
```

Postscriptum. In some cases, another definition, equivalent to the one formulated above may be useful (the formulation, given below without a proof of equivalence, is a slightly edited excerpt from the Laurent C. Siebenmann's email):
Assume that there are given curve C and point P. Choose at random a line segment emanating from the point P to the point W, with W outside the bounding box of C and P. Inductively examine the intersection points Q of $P Q$ with C. Supposing these points Q are all "nondegenerate" intersections, they are also finite in number, and a sign +1 or -1 is associated to each. Nondegenerate means that Q is a smooth point of c and the tangent vector T to C at Q is not parallel to $P Q$, and that Q is not a point where C crosses itself. The sign to use is the sign of the wedge product ' $(Q-P)$ wedge T ', i.e.,

$$
(Q-P) \cdot(T \text { rotated }-90)
$$

The sum of the signs is the winding number.
It is a probabilistic theorem that degenerate intersections will rarely be met.

